class: center, middle, inverse, title-slide # STA 506 2.0 Linear Regression Analysis ## Analysis of Variance, or ANOVA ### Dr Thiyanga S. Talagala --- ## Analysis of Variance (ANOVA) - a statistical method that separates observed variance in a response variable (continuous random variable) into different components to use for additional tests. - an approach to **test significance of regression** - if there is a **linear relationship** between the response `\(Y\)` and any of the regressor variables `\(X_1, X_2, ...X_p\)` - often thought of as an overall or global test of model adequacy. --- ## ANOVA table Source of variation | DF | Sum of squares (SS) | Mean Square (MS) | F| p-value | ---:---:---:---:---:---| Regression | 1| SSM = `\(\sum_{i=1}^{n}(\hat{Y_i}-\bar{y})^2\)`| MSR = `\(\frac{SSM}{1}\)` | `\(F* =\frac{MSR}{MSE}\)` | `\(P(F>F*)\)`| Residual error | `\(n-2\)` | SSE = `\(\sum_{i=1}^{n}(y_i-\hat{Y_i})^2\)`| MSE = `\(\frac{SSE}{(n-2)}\)` | | Total | `\(n-1\)` | SST = `\(\sum_{i=1}^{n}(y_i-\bar{y})^2\)` | | | | ### Hypotheses `\(H_0: \beta_1 = 0\)` `\(H_1: \beta_1 \neq 0\)` The p -value of this test is the same as the p -value of the t-test for `\(H_0: \beta_1 = 0\)`, this only happens in simple linear regression. --- ### Simple Linear Regression Analysis - Data ```r library(alr3) ``` ``` Loading required package: car ``` ``` Loading required package: carData ``` ```r head(heights) ``` ``` Mheight Dheight 1 59.7 55.1 2 58.2 56.5 3 60.6 56.0 4 60.7 56.8 5 61.8 56.0 6 55.5 57.9 ``` ```r dim(heights) ``` ``` [1] 1375 2 ``` --- ### Simple Linear Regression Analysis Daughter's height vs Mother's height ```r library(alr3) model <- lm(Dheight ~ Mheight, data=heights) anova(model) ``` ``` Analysis of Variance Table Response: Dheight Df Sum Sq Mean Sq F value Pr(>F) Mheight 1 2236.7 2236.66 435.47 < 2.2e-16 *** Residuals 1373 7052.0 5.14 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ``` <img src="slranova.png" width="60%" height="5%" /> --- ### Simple Linear Regression Analysis - ANOVA Demo: --- ## Simple Linear Regression Analysis - F test ### Hypothesis testing with ANOVA ``` Analysis of Variance Table Response: Dheight Df Sum Sq Mean Sq F value Pr(>F) Mheight 1 2236.7 2236.66 435.47 < 2.2e-16 *** Residuals 1373 7052.0 5.14 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ``` #### Test for significance of regression .pull-left[ `\(Y = \beta_0 + \beta_1 X + \epsilon\)` where `\(Y\)` - daughter's height `\(X\)` - mother's height ] .pull-right[ `\(H_0: \beta_1=0\)` `\(H_1: \beta_1 \neq 0\)` ] --- ## Simple Linear Regression: F test vs t-test ```r summary(model) ``` ``` Call: lm(formula = Dheight ~ Mheight, data = heights) Residuals: Min 1Q Median 3Q Max -7.397 -1.529 0.036 1.492 9.053 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 29.91744 1.62247 18.44 <2e-16 *** Mheight 0.54175 0.02596 20.87 <2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 2.266 on 1373 degrees of freedom Multiple R-squared: 0.2408, Adjusted R-squared: 0.2402 F-statistic: 435.5 on 1 and 1373 DF, p-value: < 2.2e-16 ``` --- class: duke-orange, center, middle # Multiple Linear Regression Analysis --- ## Multiple Linear Regression Analysis ```r library(tidyverse) heart.data <- read_csv("heart.data.csv") heart.data ``` ``` # A tibble: 498 × 4 ...1 biking smoking heart.disease <dbl> <dbl> <dbl> <dbl> 1 1 30.8 10.9 11.8 2 2 65.1 2.22 2.85 3 3 1.96 17.6 17.2 4 4 44.8 2.80 6.82 5 5 69.4 16.0 4.06 6 6 54.4 29.3 9.55 7 7 49.1 9.06 7.62 8 8 4.78 12.8 15.9 9 9 65.7 12.0 3.07 10 10 35.3 23.3 12.1 # … with 488 more rows ``` --- ## Multiple Linear Regression Analysis - ANOVA Source of variation | DF | Sum of squares (SS) | Mean Square (MS) | F| p-value | ---:---:---:---:---:---| Regression | p| SSM = `\(\sum_{i=1}^{n}(\hat{Y_i}-\bar{y})^2\)`| MSR = `\(\frac{SSM}{p}\)` | `\(F* =\frac{MSR}{MSE}\)` | `\(P(F>F*)\)`| Residual error | `\(n-p-1\)` | SSE = `\(\sum_{i=1}^{n}(y_i-\hat{Y_i})^2\)`| MSE = `\(\frac{SSE}{(n-p-1)}\)` | | Total | `\(n-1\)` | `\(\sum_{i=1}^{n}(y_i-\bar{y})^2\)` | | | | ### Hypotheses `\(H_0: \beta_1 = \beta_2 = ... = \beta_p = 0\)` `\(H_1: \beta_j \neq 0 \text{ for at least one j, j=1, 2, ...p}\)` The p -value of this test is not the same as the p -value of the t-test for `\(H_0: \beta_1 = 0\)`, that only happens in simple linear regression because `\(p=1\)`. --- ## Multiple Linear Regression Analysis - ANOVA ``` Analysis of Variance Table Response: heart.disease Df Sum Sq Mean Sq F value Pr(>F) Predictors 2 10176.6 5088.3 11895 < 2.2e-16 *** Residuals 495 211.7 0.4 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ``` `\(Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon\)` `\(Y\)` - percentage of people in each town who have heart disease `\(X_1\)` - percentage of people in each town who bike to work `\(X_2\)` - percentage of people in each town who smoke ### Test for Significance of Regression `\(H_0: \beta_1 = \beta_2 = 0\)` `\(H_1: \beta_j \neq 0 \text{ for at least one j, j=1, 2}\)` --- ## Tests on Individual Regression Coefficients ### Partial or marginal test test of the contribution of `\(X_j\)` given the other regressors in the model. ```r summary(regHeart) ``` ``` Call: lm(formula = heart.disease ~ biking + smoking, data = heart.data) Residuals: Min 1Q Median 3Q Max -2.1789 -0.4463 0.0362 0.4422 1.9331 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 14.984658 0.080137 186.99 <2e-16 *** biking -0.200133 0.001366 -146.53 <2e-16 *** smoking 0.178334 0.003539 50.39 <2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.654 on 495 degrees of freedom Multiple R-squared: 0.9796, Adjusted R-squared: 0.9795 F-statistic: 1.19e+04 on 2 and 495 DF, p-value: < 2.2e-16 ``` --- ### Tests on Individual Regression Coefficients (cont) ``` Call: lm(formula = heart.disease ~ biking + smoking, data = heart.data) Residuals: Min 1Q Median 3Q Max -2.1789 -0.4463 0.0362 0.4422 1.9331 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 14.984658 0.080137 186.99 <2e-16 *** biking -0.200133 0.001366 -146.53 <2e-16 *** smoking 0.178334 0.003539 50.39 <2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 0.654 on 495 degrees of freedom Multiple R-squared: 0.9796, Adjusted R-squared: 0.9795 F-statistic: 1.19e+04 on 2 and 495 DF, p-value: < 2.2e-16 ``` `\(H_0: \beta_1 = 0\)` vs `\(H_1: \beta_1 \neq 0\)` `\(p-value < 0.05\)`, we reject `\(H_0\)` under 0.05 level of significance and conclude that the regressor `biking` or `\(X_1\)`, contributes significantly to the model given that `smoking`, `\(X_2\)` is also in the model. --- ## Partial test for smoking - Write down the hypotheses - Write the decision and conclusions --- ## Next Lecture > More work - Multiple Linear Regression --- class: center, middle Acknowledgement Introduction to Linear Regression Analysis, Douglas C. Montgomery, Elizabeth A. Peck, G. Geoffrey Vining Data from https://www.scribbr.com/statistics/multiple-linear-regression/ All rights reserved by [Dr. Thiyanga S. Talagala](https://thiyanga.netlify.app/)